
David Van Horn Curriculum Vitae

Dept. of Computer Science & UMIACS
University of Maryland
5250 Iribe Center for Computer Science and Engineering
College Park, MD 20742

www.cs.umd.edu/~dvanhorn
dvanhorn@cs.umd.edu

(202) 460-4104

Education
Ph.D., Brandeis University, Comp. Sci., The Complexity of Flow Analysis in Higher-Order Languages, 2009
M.S., University of Vermont, Comp. Sci., Algorithmic Trace Effect Analysis, 2006
B.S., University of Vermont, Comp. Sci. & Info. Sys., 2003

Employment
University of Maryland

Northeastern University

Associate Professor, CS & UMIACS
Assistant Professor, CS & UMIACS

Research Assistant Professor
Visiting Assistant Professor
CRA Computing Innovation Fellow

2019–present
2014–2019

2012–2013
2011–2012
2009–2011

Awards
NSF CAREER Award 2019
OOPSLA Distinguished Paper 2018
ACM Computing Reviews Notable Book 2013
Northeastern University Excellence in Teaching Award Nominee 2013
Communications of the ACM, Research Highlight 2011
CRA Computing Innovation Fellow 2009

Grants
CAREER: Gradual Verification: From Scripting to Proving
National Science Foundation
Lead investigator

1/2019-1/2024
$573,376

SHF: Small: Collaborative Research: Online Verification-Validation
National Science Foundation
Lead investigator

9/2016–8/2019
$140,009

REU for SHF: Small: Collaborative Research: Online Verification-Validation
National Science Foundation
Lead investigator

9/2016–8/2019
$16,000

TWC: Large: Collaborative: The Science and Applications of Crypto-Currency
National Science Foundation
Co-investigator

7/2015–6/2017
$593,941

Sound Over- & Under-Approximations of Complexity & Information Security
Defense Advanced Research Projects Agency
Co-investigator

4/2015–4/2018
$830,100

1

http://www.cs.umd.edu/~dvanhorn
https://arxiv.org/abs/1311.4733
http://library.uvm.edu/collections/theses?search_type=item&bid=1563807
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1846350
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1618756
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1618756
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1518765
https://apps.dtic.mil/dtic/tr/fulltext/u2/1061405.pdf

Trustworthy and Composable Software Systems with Contracts
National Security Agency
Co-investigator

2/2014–7/2017
$301,910

Scalable and Precise Abstractions of Programs for Trustworthy Software
Defense Advanced Research Projects Agency
Lead investigator

12/2013–6/2016
$541,560

SHF: Small: Behavioral Software Contract Verification
National Science Foundation
Co-investigator

9/2012–5/2015
$400,000

CRA Computing Innovation Fellow
National Science Foundation
Lead investigator

9/2009–5/2011
$267,500

Publications
Names of student co-authors are annotated with superscripts to indicate being from UMD (m), NEU (n), or
other (o) institutions; as being undergraduate (u), graduate (g), or post-doctoral (p) students at the time of
publication. Advisees (at the time of publication) are indicated in bold.

Publications: Books
Realm of Racket.
Matthias Felleisen, David Van Horn, Conrad Barski, and Northeastern undergraduates: Forrest Bicen,u, Rose
DeMaion,u, Spencer Florencen,u, Feng-YunMimi Linn,u, Scott Lindemann,u, NicoleNussbaumn,u, Eric Petersonn,u,
Ryan Plessnern,u.
No Starch Press 2013.

Publications: Articles in Refereed Journals and Conference Proceedings
Size-Change Termination as a Contract.
Phúc C. Nguyenm,g, Thomas Gilraym,p, Sam Tobin-Hochstadt, and David Van Horn.
PLDI 2019.

Type-Level Computations for Ruby Libraries.
Milod Kazerouniano,g, Sankha Guriam,g, Niki Vazoum,p, Jeffrey S. Foster, and David Van Horn.
PLDI 2019.

Constructive Galois Connections.
David Daraism,g and David Van Horn.
JFP 2019. (ICFP 2016 Special Issue.)

Gradual Liquid Type Inference.
Niki Vazoum,p, Éric Tanter, and David Van Horn.
OOPSLA 2018. (Distinguished Paper Award.)

Theorem Proving for All: Equational Reasoning in Liquid Haskell .
Niki Vazoum,p, Joachim Breitnero,p, Rose Kunkelm,u, David Van Horn, and Graham Hutton.
Haskell Symposium 2018.

Soft Contract Verification for Higher-order Stateful Programs.
Phúc C. Nguyenm,g, Thomas Gilraym,p, Sam Tobin-Hochstadt, and David Van Horn.
POPL 2018.

2

https://cps-vo.org/node/37978
https://www.cs.umd.edu/~dvanhorn/apac.pdf
https://nsf.gov/awardsearch/showAward?AWD_ID=0937060
https://nsf.gov/awardsearch/showAward?AWD_ID=0937060
https://nostarch.com/realmofracket.htm
https://arxiv.org/abs/1808.02101
https://arxiv.org/abs/1904.03521
https://arxiv.org/abs/1807.08711
https://doi.org/10.1145/3276502
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3158139

Abstracting Definitional Interpreters.
David Daraism,g, Phúc C. Nguyenm,g, Nicholas Labichm,g, and David Van Horn.
ICFP 2017.

Higher-Order Symbolic Execution for Contract Verification and Refutation.
Phúc C. Nguyenm,g, Sam Tobin-Hochstadt, and David Van Horn.
JFP 2017. (ICFP 2014 Special Issue.)

A Vision for Online Verification-Validation.
Matthew A. Hammer, Bor-Yuh Evan Chang, and David Van Horn.
GPCE 2016.

Constructive Galois Connections: Taming the Galois Connection Framework for Mechanized Metatheory.
David Daraism,g and David Van Horn.
ICFP 2016.

Pushdown Control-Flow Analysis for Free.
Thomas Gilrayo,g, Steven Lydeo,g, Michael D. Adamso,p, and Matthew Might.
POPL 2016.

Incremental Computation with Names.
Matthew A. Hammerm,p, Joshua Dunfield, Kyle Headleym,u, Nicholas Labichm,g, Jeff Foster, Michael Hicks.
OOPSLA 2015.

Galois Transformers and Modular Abstract Interpreters.
David Daraism,g, Matthew Might, and David Van Horn.
OOPSLA 2015.

Running Probabilistic Programs Backwards.
Neil Torontom,p, Jay McCarthy, and David Van Horn.
ESOP 2015.

Abstracting Abstract Control .
Dionna A. Glazen,g and David Van Horn.
DLS 2014.

Pruning, Pushdown Exception-Flow Analysis.
Shuying Liango,g, Weibin Suno,g, Matthew Might, Andrew W. Keepo,p, and David Van Horn.
SCAM 2014.

Soft Contract Verification.
Phúc C. Nguyenm,g, Sam Tobin-Hochstadt, and David Van Horn.
ICFP 2014.

Pushdown flow analysis with abstract garbage collection.
Dionna A. Glazen,g, Ilya Sergeyo,p, Christopher Earlo,g, Matthew Might, and David Van Horn.
JFP 2014. (ICFP 2012 Special Issue.)

Optimizing Abstract Abstract Machines.
Dionna A. Glazen,g, Nicholas Labichn,u, Matthew Might, and David Van Horn.
ICFP 2013.

Higher-Order Symbolic Execution via Contracts.
Sam Tobin-Hochstadt and David Van Horn.
OOPSLA 2012.

Systematic Abstraction of Abstract Machines.
David Van Horn and Matthew Might.
JFP 2012. (ICFP 2010 Special Issue.)

3

https://doi.org/10.1145/3110256
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1145/2993236.2993255
https://doi.org/10.1145/2951913.2951934
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/2814270.2814305
https://doi.org/10.1145/2858965.2814308
https://doi.org/10.1007/978-3-662-46669-8_3
https://doi.org/10.1145/2661088.2661098
https://doi.org/10.1109/SCAM.2014.44
http://dx.doi.org/10.1145/2628136.2628156
http://dx.doi.org/10.1017/S0956796814000100
http://dx.doi.org/10.1145/2500365.2500604
http://dx.doi.org/10.1145/2384616.2384655
http://dx.doi.org/10.1017/S0956796812000238

Introspective Pushdown Analysis of Higher-order Programs.
Christopher Earlo,g, Ilya Sergeyo,g, Matthew Might, and David Van Horn.
ICFP 2012.

A Family of Abstract Interpretations for Static Analysis of Concurrent Higher-Order Programs.
Matthew Might and David Van Horn.
SAS 2011.

Abstracting Abstract Machines: A Systematic Approach to Higher-Order Program Analysis.
David Van Horn and Matthew Might.
CACM 2011. (Research Highlight.)

Abstracting Abstract Machines.
David Van Horn and Matthew Might.
ICFP 2010.

Evaluating Call-By-Need on the Control Stack.
Stephen Changn,g, David Van Horn, and Matthias Felleisen.
TFP 2010. (Best Student Paper Award.)

Resolving and Exploiting the k-CFA Paradox: Illuminating Functional vs. Object-Oriented Program Analysis.
Matthew Might, Yannis Smaragdakis, and David Van Horn.
PLDI 2010.

Deciding kCFA is complete for EXPTIME .
David Van Horn and Harry G. Mairson.
ICFP 2008.

Flow Analysis, Linearity, and PTIME .
David Van Horn and Harry G. Mairson.
SAS 2008.

Types and Trace Effects of Higher Order Programs.
Christian Skalka, Scott Smith, and David Van Horn.
JFP 2008.

Relating Complexity and Precision in Control Flow Analysis.
David Van Horn and Harry G. Mairson.
ICFP 2007.

Publications: Articles in Workshop Proceedings
Sound and Precise Malware Analysis for Android via Pushdown Reachability and Entry-Point Saturation.
Shuying Liango,p, Andrew W. Keepo,p, Matthew Might, Steven Lydeo,g, Thomas Gilrayo,g, Petey Aldouso,g,
and David Van Horn.
ACMWorkshop on Security and Privacy in Smartphones & Mobile Devices 2013.

AnaDroid: Malware Analysis of Android with User-supplied Predicates.
Shuying Liango,p, Matthew Might, and David Van Horn.
Workshop on Tools for Automatic Program Analysis 2013.

Concrete Semantics for Pushdown Analysis: The Essence of Summarization.
Dionna A. Glazen,g and David Van Horn.
Workshop on Higher-Order Program Analysis 2013.

From Principles to Practice with Class in the First Year.
Sam Tobin-Hochstadt and David Van Horn.
Workshop on Trends in Functional Programming in Education 2013.

4

http://dx.doi.org/10.1145/2364527.2364576
http://dx.doi.org/10.1007/978-3-642-23702-7_16
http://dx.doi.org/10.1145/1995376.1995400
http://dx.doi.org/10.1145/1863543.1863553
http://dx.doi.org/10.1007/978-3-642-22941-1_1
http://dx.doi.org/10.1145/1806596.1806631
http://dx.doi.org/10.1145/1411204.1411243
http://dx.doi.org/10.1007/978-3-540-69166-2_17
http://dx.doi.org/10.1017/S0956796807006466
http://dx.doi.org/10.1145/1291151.1291166
http://dx.doi.org/10.1145/2516760.2516769
http://matt.might.net/papers/liang2013anadroid.pdf
http://arxiv.org/abs/1305.3163
http://dx.doi.org/10.4204/EPTCS.136

Semantic Solutions to Program Analysis Problems..
Sam Tobin-Hochstadt and David Van Horn.
PLDI 2011, FIT Session.

Pushdown Control-Flow Analysis of Higher-Order Programs.
Christopher Earlo,g, Matthew Might, and David Van Horn.
Workshop on Scheme and Functional Programming 2010.

A Type and Effect System for Flexible Abstract Interpretation of Java.
Christian Skalka, Scott F. Smith, and David Van Horn.
ACMWorkshop on Abstract Interpretations of Object-Oriented Programs 2005.

Publications: Reports, Drafts, and Non-Refereed Monographs
Sound Over- & Under-Approximations of Complexity & Information security (SOUCIS).
Michael Hicks, David Van Horn, Jeff Foster, Eric Koskinen, Dawn Song, Timos Antopoulos.
AFRL Technical Report AFRL-RI-RS-TR-2018-229, 2018.

An Introduction to Redex with Abstracting Abstract Machines.
David Van Horn.
Draft 2018.

Automated Techniques for Higher-Order Program Verification.
Naoki Kobayashi, Luke Ong, and David Van Horn.
Progress in Informatics, No. 10, 2013.

Pushdown Abstractions of Javascript.
David Van Horn and Matthew Might.
CoRR, abs/1109.4467, 2011.

Talks
From Scripting to Proving: Gradual Verification for Expressive Programming Languages.
New York University, CS Colloquium, March 2019.

Size-Change Termination as a Contract.
IBM Programming Languages Day, December 2018.

From Scripting to Proving: Gradual Verification with a Scheme.
Keynote, The ACM SIGPLAN Scheme Workshop, September 2018.

From Scripting to Proving: Gradual Verification for Expressive Programming Languages.
Yale University, CS Colloquium, December 2018.
University of Maryland, CS Colloquium, September 2018.

Symbolic Execution for Higher-Order Program Verification.
Vrije Universiteit Brussel, May 2018.
Princeton University, May 2018.
UCLA, Compilers Colloquium, April 2018.
University of Washington, PLSE Colloquium, April 2018.

Redex, Abstract Machines, and Abstract Interpretation.
Oregon Programming Languages Summer School (OPLSS), July 2017. Three days of lectures.

Verification and Refutation of Behavioral Contracts with Higher-Order Symbolic Execution.
University of Chile, PLEAID Seminar, January 2016.
Johns Hopkins University, PL Seminar, October 2015.
Indiana University, PL Wonks Seminar, January 2015.

5

https://arxiv.org/abs/1105.0106
https://arxiv.org/abs/1007.4268
http://dx.doi.org/10.1016/j.entcs.2005.01.027
https://apps.dtic.mil/dtic/tr/fulltext/u2/1061405.pdf
https://dvanhorn.github.io/redex-aam-tutorial/
http://www.nii.ac.jp/pi/n10/10_157.pdf
http://arxiv.org/abs/1109.4467

Tutorial: Introduction to Redex with Abstracting Abstract Machines.
University of Chile, PLEAID Seminar, January 2016.

Young Researcher Panel .
ACM SIGPLAN Programming Languages Mentoring Workshop (PLMW) at ICFP, August 2015.

Abstracting Abstract Machines.
University of Utah, PLT Redex Summer School, July 2015.

Soft Contract Verification.
Dagstuhl Seminar on Scripting Languages and Frameworks: Analysis and Verification, July 2014.
NII Workshop on Software Contracts for Communication, Monitoring, and Security, May 2014.

Analysis for Trustworthy Software.
Third Annual Maryland Cybersecurity Center Symposium, June 2014.

Synthesis from Contracts.
Defense Advanced Research Projects Agency, March 2014.

Program Analysis for Trustworthy Software.
Laboratory for Telecommunication Sciences, March 2014.

Abstracting Definitional Interpreters.
Mid-Atlantic Programming Languages Seminar, April 2013.

Analysis for Trustworthy Software.
University of Maryland, CS Colloquium, March 2013.

Analyzing Software Contracts.
DARPA Clean-slate design of Resilient Adaptive Secure Hosts, December 2012.

Raising the Level of Discourse with GnoSys.
DARPA Clean-slate design of Resilient Adaptive Secure Hosts, November 2012.

Towards the Verification of Behavioral Software Contracts.
Microsoft Research, RiSE Group invited lecture, Redmond, Washington, November 2012.

Program Verification via Abstract Reduction Semantics.
Harvard University, Advanced Functional Language Compilation (invited lecture), November 2012.

Optimized Machines for Program Analysis.
Harvard University, Advanced Functional Language Compilation (invited lecture), November 2012.

Abstract Machines for Program Analysis.
Harvard University, Advanced Functional Language Compilation (invited lecture), November 2012.

Scalable Abstractions for Trustworthy Software.
DARPA Automated Program Analysis for Cybersecurity, October 2012.

Low-level Analysis for High-level Assurance.
DARPA Clean-slate design of Resilient Adaptive Secure Hosts, October 2011.

Verification via Abstract Reduction.
NII Workshop: Automated Techniques for Automated Higher-order Program Verification, September 2011.

The Complexity of kCFA.
NII Workshop: Automated Techniques for Automated Higher-order Program Verification, September 2011.

What Program Analysis Can and Cannot Do for You.
Rice University CS Colloquium, March 2011.

What Program Analysis Can and Cannot Do for You.
University of Utah, CS Colloquium, February 2011.

6

The Paradox of Flow Analysis, Or: What We Talk About When We Talk About Higher-Order Flow Analysis.
MIT Programming Languages Working Group, February 2011.

Modular Analysis via Abstract Reduction Semantics.
New Jersey Programming Languages and Systems Symposium, Rutgers University, December 2010.

Pushdown Control-Flow Analysis of Higher-Order Programs.
IBM Programming Languages Day, July 2010.

Abstracting Abstract Machines: Storing and Stacking Continuations.
Harvard University, Programming Languages Seminar, July 2010.

Abstracting Abstract Machines.
New England Programming Languages and Systems Symposium, April 2010.

Resolving and Exploiting the k-CFA Paradox.
University of Oregon, CIS Colloquium, April 2010.
New England Programming Languages and Systems Symposium, MIT, December 2009.

Subcubic Control-Flow Analysis Algorithms.
ACM Symposium in Honor of Mitchell Wand, Northeastern University, August 2009.

The Complexity of Flow Analysis.
New England Programming Languages and Systems Symposium, November 2008.
Northeastern University, Graduate Programming Languages Seminar, October 2008.

Relating Complexity and Precision in Control Flow Analysis.
Northeastern University, Programming Languages Seminar, May, 2007.
IBM Programming Languages Day, May 2007.

Linearity and Program Analysis.
Northeastern University, Graduate Programming Languages Seminar, October 2007.

Advising: Undergraduate Research Advisor
Deena Postol 2018–current
Jacob Prinz 2018–current
Rachael Zehrung Now: PhD student at UMD 2018–2019
Cameron Moy Now: PhD student at Northeastern University 2018–2019
Rose Kunkel Now: PhD student at University of California, San Diego 2016–2018
Kyle Headley Now: PhD student at University of Colorado, Boulder 2014–2015
Rebecca MacKenzie Now: Academic IT Coordinator, Northeastern University 2014

Advising: Masters Advisor
Nicholas Labich Now: United Income 2018
Javran Cheng Now: Google 2018

Advising: Doctoral Advisor
Sankha Guria (Co-advised with Jeff Foster.)
Phuc C. Nguyen Higher-order Symbolic Execution expected 2019
David Darais Mechanizing Abstract Interpretation

Now: Asst. Professor, University of Vermont
2017

Dionna A. Glaze Automating Abstract Interpretation of Abstract Machines,
Northeastern University
Now: Google

2014

7

http://kyleheadley.github.io/PHDWebsite/
https://www.ccis.northeastern.edu/people/rebecca-mackenzie/
https://sankhs.com/
http://www.cs.tufts.edu/~jfoster/
https://philnguyen.github.io/
http://david.darais.com/
http://david.darais.com/assets/papers/phd-thesis/darais-phd-thesis.pdf
https://deeglaze.github.io/
https://arxiv.org/abs/1504.08033

Advising: Doctoral Thesis Committee Member
Stephen Herwig Execution Environments for Running Legacy Applications in

Multi-Party Trust Settings (Proposal)
2019

Samuel Huang Learning Temporal Properties from Data Streams 2019
Brianna Ren Type Checking and Inference for Dynamic Languages 2019
Quentin Stiévenart Scalable Designs for Abstract Interpretation of Concurrent Programs: Applica-

tion to Actors and Shared-Memory Multi-Threading, Vrije Universiteit Brussel
2018

Kristopher Micinski Interaction-Based Privacy Policies for Mobile Apps
Now: Asst. Professor, Syracuse University

2017

Piotr Mardziel Modeling, Quantifying, and Limiting Adversary Knowledge
Now: Systems Scientist, Carnegie Mellon University

2015

Vincent St-Amour How to Generate Actionable Advice about Performance Problems
Now: Assistant Professor of Instruction, Northwestern University

2015

Stephen Chang On the Relation Between Laziness and Strictness, Northeastern University
Now: Associate Research Scientist, Northeastern University

2014

Shuying Liang Static Analysis of Android Applications, University of Utah
Now: HP Fortify Labs.

2014

Letterio Galletta Adaptivity: Linguistic Mechanisms and Static, Analysis Techniques, University
of Pisa
Now: Asst. Professor, IMT School for Advanced Studies, Lucca.

2014

Advising: Postdoctoral Advisor
Niki Vazou Now: Asst. Professor, IMDEA 2016–2018
Thomas Gilray Now: Asst. Professor, University of Alabama, Birmingham 2016–2018
Shiyi Wei Now: Asst. Professor, University of Texas at Dallas 2015–2017
Matthew Hammer Now: Asst. Professor, University of Colorado, Boulder 2014
Neil Toronto Now: Microsoft Research, Cambridge 2014

Service: Activities for Funding Agencies
NSF Directorate for CISE, Panelist, 2011.
NSF Directorate for CISE, Panelist, 2010.

Service: Activities for Journals, Conferences, and Workshops
Steering Committee: ICFP 2013–2015, HOPA 2014.

Chair: Programming Langauges Mentoring Workshop (PLMW) at ICFP 2019, PLMW at ICFP 2018, POPL
Workshops 2013–2015, TFP 2016, HOPA 2014, NIIWorkshop on Automated Techniques for Higher-Order
Program Verification 2011, New England Programming Languages and Systems Symposium 2011.

ProgramCommittee: OOPSLA 2019, PADL 2018, TFP 2017, SAS 2017, POPL 2017, ECOOP 2016, ICFP
2015, OBT 2015, ESOP 2014, PADL 2014, LOLA 2014, TFP 2014, TFPIE 2014, Scala 2013, HOPA 2013,
TFP 2013, ICFP 2011, Scheme 2011, Scheme 2009.

External Review Committee: ICFP 2018, POPL 2016, POPL 2013.

Reviewer: POPL 2019, VMCAI 2016, POPL 2015, POPL 2014, VMCAI 2014, ICFP 2014, DLS 2014,
OOPSLA 2012, DLS 2012, ESOP 2011, ICFP 2010, POPL 2008, LICS 2007, CSL 2007.

Journal Reviewer: ACMComputing Surveys, ACMTransactions onComputational Logic, ACMTransactions
on Programming Languages and Systems, Higher-Order and Symbolic Computation, Journal of Functional
Programming, Science of Computer Programming.

8

https://www.cs.umd.edu/~smherwig/
http://www.cs.umd.edu/~srhuang/
https://www.cs.umd.edu/~bren/
https://www.cs.tufts.edu/~jfoster/papers/thesis-ren.pdf
http://soft.vub.ac.be/soft/members/qstieven
https://cris.vub.be/files/38081827/vub_soft_phd_18_01.pdf
https://cris.vub.be/files/38081827/vub_soft_phd_18_01.pdf
http://kmicinski.com/
https://drum.lib.umd.edu/bitstream/handle/1903/20274/Micinski_umd_0117E_18381.pdf
https://piotr.mardziel.com/
https://drum.lib.umd.edu/bitstream/handle/1903/16470/Mardziel_umd_0117E_15952.pdf
http://users.eecs.northwestern.edu/~stamourv/
http://users.eecs.northwestern.edu/~stamourv/papers/dissertation.pdf
http://www.ccs.neu.edu/home/stchang/
http://www.ccs.neu.edu/racket/pubs/dissertation-chang.pdf
https://plus.google.com/103800591388916331278
https://search.proquest.com/openview/7d4ee01df0214645b276e453aaadfca2/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.imtlucca.it/letterio.galletta
http://www.di.unipi.it/~galletta/phdThesis.pdf
https://nikivazou.github.io/
https://thomas.gilray.org/
https://www.utdallas.edu/~swei/
http://matthewhammer.org/
https://www.cs.umd.edu/~ntoronto/

Service: Departmental Service
Faculty Search Committee 2018–current
Graduate Student Review Committee, Chair 2016–current
Middle States Committee 2016–2018
Graduate Admissions Committee 2014–2016
Space Planning Committee for Iribe Center 2014–2018
Education Committee 2013–current
PL/SE/HCI Field Committee 2013–current

Teaching: Curriculum Development

CMSC 131A: Systematic Program Design I: This course (along with 132A) is a complete redesign of the first year
introductory programming curriculum at UMD. The course is an introduction to computing and program-
ming. Its major goal is to introduce students to the principles of systematic problem solving through pro-
gramming and the basic rules of computation. This course exposes students to the fundamental techniques
of program design: an approach to the creation of software that relies on systematic thought, planning, and
understanding from the very beginning, at every stage and for every step. I wrote extensive notes, a complete
set of labs, assignments, midterms, practice problems, practice exams, and final exams. Video recordings of
all lectures, including screen captures of in-class coding, are available on Panopto.

CMSC 132A: Systematic Program Design II: This is the follow-up course to 131A. It studies the class-based pro-
gram design and the design of abstractions that support the design of reusable software and libraries. It covers
the principles of object oriented program design, the basic rules of program evaluation, and examines the
relationship between algorithms and data structures, as well as basic techniques for analyzing algorithm com-
plexity. I wrote extensive notes, a complete set of labs, assignments, midterms, practice problems, practice
exams, and final exams. Video recordings of all lectures, including screen captures of in-class coding, are
available on Panopto.

CMSC 430: Introduction to Compilers: Each semester I have taught this course, I have revised existing materials
and written new midterms and exams.

CMSC 631: Program Analysis and Understanding: Upon joining the faculty at UMD, I did a from-scratch re-
design of the PhD-level PL and program analysis course. The course objectives include to introducing stu-
dents to the complementary research areas of programming languages and program analysis and exposing
students to the basic principles of research processes in computer science: how to ask/articulate questions and
how to recognize elements of solutions. It covers basic theoretical ideas and practical techniques for modeling
and analyzing programming languages; and leveraging those techniques to mechanically reason about pro-
grams. As part of the course development, I wrote an extensive set of course notes, designed research projects,
developed lectures, exams, and programming assignments. I have signficantly revised and refined the course
over three iterations.

Honors Intro. to Programming and Computing II (Northeastern University): With Sam Tobin-Hochstadt, I de-
signed this course from scratch to offer a second semester programming course for Honors College and ad-
vanced students to take as an alternative to the standard CS II course. We developed an extensive set of course
notes, a pedagogicaly oriented programming language for exploring class- and object-oriented designs, and a
complete set of exams, labs, and problem sets.

Honors Intro. to Programming and Computing I (Northeastern University): With Olin Shivers, I adapted the
existing intro course for onors Collegeand advanced students to take as analternative to the standard CS I
course. We developed several new units on advanced topics such as interpreters and control operators as well
as accompanying labs, exams, and problem sets.

9

http://www.cs.umd.edu/class/fall2018/cmsc131A/
http://www.cs.umd.edu/class/spring2018/cmsc132A/
http://www.cs.umd.edu/class/spring2017/cmsc430/
http://www.cs.umd.edu/class/fall2015/cmsc631/
http://homes.sice.indiana.edu/samth/
http://www.ccs.neu.edu/home/shivers/

Teaching: Courses Taught
Introduction to Compilers, CMSC 430 (85), Fall 2019
Make Your Own Video Games: An Introduction to Programming and Computing (Terps Young Scholars
program), CMSC 198Q, Summer 2019
Systematic Program Design II, CMSC 132A (40), Spring 2019
Systematic Program Design I, CMSC 131A (40), Fall 2018
Systematic Program Design II, CMSC 132A (75), Spring 2018
Systematic Program Design I, CMSC 131A (140), Fall 2017
Introduction to Compilers, CMSC 430 (40), Spring 2017
Introduction to Compilers, CMSC 430 (40), Spring 2016
Program Analysis and Understanding, CMSC 631 (20), Fall 2015
Introduction to Compilers, CMSC 430 (40), Spring 2015
Program Analysis and Understanding, CMSC 631 (15), Fall 2014
Program Analysis and Understanding, CMSC 631 (20), Spring 2014
(Northeastern University) Intro. to Programming and Computing I (247), 2007–2010.
(Northeastern University) Intro. to Programming and Computing I, Honors (134), 2009–2011.
(Northeastern University) Intro. to Programming and Computing II (312), 2008–2009, 2012–2013.
(Northeastern University) Intro. to Programming and Computing II, Honors (110), 2011-2013.

10

