
CMSC 330: Organization of
Programming Languages

Lets, Tuples, Records

1
CMSC330 Spring 2019

2

Let Expressions

• Enable binding variables in other expressions
– These are different from the let definitions we’ve

been using at the top-level
• They are expressions, so they have a value

• Syntax
– let x = e1 in e2
– x is a bound variable
– e1 is the binding expression
– e2 is the body expression

Let Expressions
• Syntax

– let x = e1 in e2

• Evaluation
– Evaluate e1 to v1
– Substitute v1 for x in e2 yielding new expression e2 ’
– Evaluate e2’ to v2
– Result of evaluation is v2

3

Example
let x = 3+4 in 3*x
Ølet x = 7 in 3*x
Ø3*7
Ø21

Let Expressions
• Syntax

– let x = e1 in e2

• Type checking
– If e1 : t1 and e2 : t (assuming x : t1)
– Then let x = e1 in e2 : t

• Example: let x = 3+27 in x*3
– 3+27 : int
– x*3 : int (assuming	x:int)
– so let x = 3+27 in x*3 : int

4

5

Let Definitions vs. Let Expressions

• At the top-level, we write
– let x = e;; (* no in e2 part *)
– This is called a let definition, not a let expression

• Because it doesn’t, itself, evaluate to anything

• Omitting in means “from now on”:
let pi = 3.14;;

(* pi is now bound in the rest of the top-level scope *)

6

Top-level expressions

• We can write any expression at top-level, too
– e;;
– This says to evaluate e and then ignore the result

• Equivalent to let _ = e;;
• Useful when e has a side effect, such as reading/writing a file,

printing to the screen, etc.

• When run, outputs 42 to the screen

let x = 37;;
let y = x + 5;;
print_int y;;
print_string "\n";;

7

Let Expressions: Scope
• In	let x = e1 in e2, variable x is not visible

outside of e2

let pi = 3.14 in pi *. 3.0 *. 3.0;;
print_float pi;;

bind pi (only) in body of let
(which is pi *. 3.0 *. 3.0)error: pi not bound

Binding in other languages

• Compare to similar usage in Java/C

8

let pi = 3.14 in
pi *. 3.0 *. 3.0;;

pi;; (* pi unbound! *)

{
float pi = 3.14;

pi * 3.0 * 3.0;
}
pi; /* pi unbound! */

9

Examples – Scope of Let bindings

• x;;
– (* Unbound value x *)

• let x = 1 in x + 1;;
– (* 2 *)

• let x = x in x + 1;;
– (* Unbound value x *)

10

Examples – Scope of Let bindings

• let x = 1 in x + 1 + x ;;
– (* 3 *)

• (let x = 1 in x + 1) ;; x;;
– (* Unbound value x *)

• let x = 4 in let x = x + 1 in x ;;
– (* 5 *)

()

()

Second binding of x
shadows the first

11

Shadowing Names

• Shadowing is rebinding a name in an inner
scope to have a different meaning
– May or may not be allowed by the language

C
int i;

void f(float i) {
{
char *i = NULL;
...

}
} OCaml

let x = 3;;
let g x = x + 3;;

Java
void h(int i) {
{
float i; // not allowed
...

}
}

Shadowing, by the Semantics
• Evaluation of let x = e1 in e2:

– Evaluate e1 to v1 then substitute v1 for x in e2
yielding new expression e2 ’ …

• What if e2 is also a let for x ?
– Substitution will stop at the e2 of a shadowing x

12

Example
let x = 3+4 in let x = 3*x in x+1
Ølet x = 7 in let x = 3*x in x+1
Ølet x = 3*7 in x+1
Ølet x = 21 in x+1
Ø21+1
Ø22

Not substituted,
since it is shadowed
by the inner let

13

Let Expressions in Functions

• You can use let inside of functions for local vars

– And you can use many lets in sequence

• This is good style: more readable with lets than
without

let area r =
let pi = 3.14 in
pi *. r *. r

let area d =
let pi = 3.14 in
let r = d /. 2.0 in
pi *. r *. r

let area_bad d =
3.14 *. (d /. 2.0) *. (d /. 2.0)

Shadowing (of Locals) Discouraged

14

• You can use shadowing to simulate mutation
(variable update)

• But avoiding shadowing can be clearer, so we
recommend not using it
– With no shadowing, if you see a variable x, you know

it hasn’t been ”changed,” no matter where it appears
– if you want to “update” n, use a new name n1, n’, etc.

let rec f x n =
if x = 0 then 1
else
let x = x - 1 in (* shadowed *)
n * (f x n)

15

Nested Let Expressions

• Uses of let can be
nested in OCaml
– Nested bound

variables (pi and
r) invisible outside

• Similar scoping
possibilities C and
Java

float res;
{ float area;
{ float pi = 3.14
float r = 3.0;
area = pi * r * r;

}
res = area / 2.0;

}

let res =
(let area =
(let pi = 3.14 in
let r = 3.0 in
pi *. r *. r) in

area /. 2.0);;

16

Nested Let Style: Generally Avoid

• Oftentimes a nested
binding can be
rewritten in a more
linear style
– Easier to understand

• Can go too far:
namespace pollution
– Avoiding adding

unnecessary
variable bindings to
top-level

let res =
(let area =
(let pi = 3.14 in
let r = 3.0 in
pi *. r *. r) in

area /. 2.0);;

let res =
let pi = 3.14 in
let r = 3.0 in
let area = pi *. r *. r in
area /. 2.0;;

let pi = 3.14;;
let r = 3.0;;
let area = pi *. r *. r;;
let res = area /. 2.0;;

Quiz 1
Which of these is not an expression that
evaluates to 3?

A. let x=3
B. let x=2 in x+1
C. let x=3 in x
D. 3

17

Quiz 1
Which of these is not an expression that
evaluates to 3?

A. let x=3 --->	not	an	expression
B. let x=2 in x+1
C. let x=3 in x
D. 3

18

19

Quiz 2: What does this evaluate to?

let x = 2 in
x = 3

A. 3
B. 2
C. true
D. false

20

Quiz 2: What does this evaluate to?

let x = 2 in
x = 3

A. 3
B. 2
C. true
D. false

A. 13
B. 8
C. 11
D. 18

let x = 3 in
let y = x+2 in
let x = 8 in
x+y

21

Quiz 3: What does this evaluate to?

A. 13
B. 8
C. 11
D. 18

let x = 3 in
let y = x+2 in
let x = 8 in
x+y

22

Quiz 3: What does this evaluate to?

let Specializes match

More general form of let allows patterns:
• let p = e1 in e2

– where p is a pattern. If e1 fails to match that pattern
then an exception is thrown

This pattern form of let is equivalent to
• match e1 with p -> e2

Examples
• let [x] = [1] in 1::x (* evaluates to [1;1] *)
• let h::_ = [1;2;3] in h (* evaluates to 1 *)
• let () = print_int 5 in 3 (* evaluates to 3 *)

23

24

Tuples

• Constructed using (e1, …, en)
• Deconstructed using pattern matching

– Patterns involve parens and commas, e.g., (p1, p2, …)

• Tuples are similar to C structs
– But without field labels
– Allocated on the heap

• Tuples can be heterogenous
– Unlike lists, which must be homogenous
– (1, ["string1";"string2"]) is a valid tuple

25

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

26

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

int * int
int * string * float
int * string list * char

(int * int) list
(int * int) list
error

Because the first list element has
type int * int, but the second has
type int * int * int – list elements
must all be of the same type

27

Pattern Matching Tuples
let plusThree t =
match t with
(x, y, z) -> x + y + z;;

plusThree : int*int*int -> int = <fun>

let plusThree’ (x, y, z) = x + y + z;;
plusThree’ : int*int*int -> int = <fun>

let addOne (x, y, z) = (x+1, y+1, z+1);;
addOne : int*int*int -> int*int*int = <fun>

plusThree (addOne (3, 4, 5));;
- : int = 15

Remember, semicolon for lists, comma for tuples
• [1, 2] = [(1, 2)] which	is	a	list	of	size	one
• (1; 2) Warning: This expression should have type unit

28

More Examples With Tuples
• let sum ((a, b), c) = (a+c, b+c)

– sum ((1, 2), 3) = (4, 5)

• let plusFirstTwo (x::y::_, a) = (x + a, y + a)
– plusFirstTwo ([1; 2; 3], 4) = (5, 6)

• let tls (_::xs, _::ys) = (xs, ys)
– tls ([1; 2; 3], [4; 5; 6; 7]) = ([2; 3], [5; 6; 7])

29

Tuples Are A Fixed Size
• This OCaml definition

– # let foo x = match x with
(a, b) -> a + b
| (a, b, c) -> a + b + c;;

• Would yield this error message
– This pattern matches values of type 'a * 'b * 'c

but is here used to match values of type 'd * 'e

• Tuples of different size have different types

30

Records
• Records: identify elements by name

– Elements of a tuple are identified by position

• Define a record type before defining record values

• Construct a record
– { f1=e1; …; fn=en } : evaluates e1 to en, assigns

results to the given fields
• Fields do not have to be written in order

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“f”^“eb” };;
today : date = { day=16; year=2017; month=“feb” };;

31

Destructing Records

• Access by field name or pattern matching

• Notes:
– In record patterns, you can skip or reorder fields
– You can use the field name as the bound variable

type date = { month: string; day: int; year: int }
let today = { day=16; year=2017; month=“feb” };;

print_string today.month;; (* prints feb *)
(* patterns *)
let { month=_; day=d } = today in
let { year } = today in
let _ = print_int d in (* prints 16 *)
print_int year;; (* prints 2017 *)

A. 3
B. 2
C. 1
D. type error

let get (a,b) = a+b in
get 1 2

32

Quiz 4: What does this evaluate to?

A. 3
B. 2
C. 1
D. type error – get takes one argument (a pair)

33

Quiz 4: What does this evaluate to?

let get (a,b) = a+b in
get 1 2

A. 3
B. type error
C. 2
D. 1

let get x y =
match x with
(a,b) -> a+y

in
get (1,2) 1

34

Quiz 5: What does this evaluate to?

A. 3
B. type error
C. 2
D. 1

let get x y =
match x with
(a,b) -> a+y

in
get (1,2) 1

35

Quiz 5: What does this evaluate to?

A. point -> int list
B. int list -> int list
C. point -> point
D. point -> bool list

type point = {x:int; y:int}

let shift p =
match p with
{ x=px; y=py } -> [px;py]

36

Quiz 6: What is the type of shift?

A. point -> int list
B. int list -> int list
C. point -> point
D. point -> bool list

type point = {x:int; y:int}

let shift p =
match p with
{ x=px; y=py } -> [px;py]

37

Quiz 6: What is the type of shift?

